Exercise 29

Solve the boundary-value problem, if possible.

$$
y^{\prime \prime}=y^{\prime}, \quad y(0)=1, \quad y(1)=2
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
r^{2} e^{r x}=r e^{r x}
$$

Divide both sides by $e^{r x}$.

$$
r^{2}=r
$$

Solve for r.

$$
\begin{gathered}
r^{2}-r=0 \\
r(r-1)=0 \\
r=\{0,1\}
\end{gathered}
$$

Two solutions to the ODE are $e^{0}=1$ and e^{x}. By the principle of superposition, then,

$$
y(x)=C_{1}+C_{2} e^{x} .
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
& y(0)=C_{1}+C_{2}=1 \\
& y(1)=C_{1}+C_{2} e=2
\end{aligned}
$$

Solving this system of equations yields $C_{1}=(e-2) /(e-1)$ and $C_{2}=1 /(e-1)$. Therefore, the solution to the boundary value problem is

$$
\begin{aligned}
y(x) & =\frac{e-2}{e-1}+\frac{1}{e-1} e^{x} \\
& =\frac{e-2+e^{x}}{e-1} .
\end{aligned}
$$

Below is a graph of $y(x)$ versus x.

