Exercise 29

Solve the boundary-value problem, if possible.

$$y'' = y', \quad y(0) = 1, \quad y(1) = 2$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y = e^{rx}$.

$$y = e^{rx} \rightarrow y' = re^{rx} \rightarrow y'' = r^2 e^{rx}$$

 $r^2 e^{rx} = r e^{rx}$

 $r^2 = r$

Plug these formulas into the ODE.

Divide both sides by
$$e^{rx}$$
.

Solve for r.

$$r^{2} - r = 0$$
$$r(r - 1) = 0$$
$$r = \{0, 1\}$$

Two solutions to the ODE are $e^0 = 1$ and e^x . By the principle of superposition, then,

$$y(x) = C_1 + C_2 e^x.$$

Apply the boundary conditions to determine C_1 and C_2 .

$$y(0) = C_1 + C_2 = 1$$

 $y(1) = C_1 + C_2 = 2$

Solving this system of equations yields $C_1 = (e-2)/(e-1)$ and $C_2 = 1/(e-1)$. Therefore, the solution to the boundary value problem is

$$y(x) = \frac{e-2}{e-1} + \frac{1}{e-1}e^x$$
$$= \frac{e-2+e^x}{e-1}.$$

Below is a graph of y(x) versus x.

